

Benha University 1<sup>st</sup> Term (January 2019) Final Exam Class: 4th Year Students (Computer Science Major) Subject: Compiler Theory Course Code: CSW 456



Faculty of Computers & Informatics Date: 10/1/2019 Time: 3 Hours Total Marks: 75 Marks Examiner(s): Dr. Ahmed Hassan

## Answer the following questions [6 questions in 2 pages]:

### Question No. 1

## [10 Marks]

# (a)Define the following:

(1) Lexemes : is a sequence of characters in the source program that matches the pattern for a token and is identified by the lexical analyzer as an instance of that token.

(2) Lexical Analyzer : read the input characters of the source program. Group them into lexemes. Produce as output a sequence of tokens for each lexeme in the source program.

(3) Parser : It takes the token produced by lexical analysis as input and generates a parse tree (or syntax tree). In this phase, token arrangements are checked against the source code grammar.

# (b)Draw the phases of a compiler.



(a) Find a *regular expression* for the language of all strings over {a,b} with odd number of "a" and ending with abb.

b\*(ab\*a)\*b\*abb **OR** (b + ab\*a)\*abb **OR** any one equivalent.

(b) convert the <u>regular expression</u> "ab + (a + b)" to NFA.



**Question No. 3** 

[10 Marks]

 $\begin{array}{l} S \rightarrow S{+}S \mid S{-}S \mid T \\ T \rightarrow S^{*}T \mid S{/}T \mid a \end{array}$ 

# (a) Prove that the grammar is ambiguous.



(b) Remove the left factor then the left recursion from the grammar.

| S→SA   T               | S→TE                      | S→TE                                                                                                                                           |
|------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| A→+S   -S              | $E \rightarrow AE \mid E$ | $E \rightarrow AE \mid E$                                                                                                                      |
| T→SB   a               | T→TEB   a                 | T→aF                                                                                                                                           |
| $B \rightarrow T   /T$ | A→+S   -S                 | $\mathbf{F} \rightarrow \mathbf{EBF} \mid \mathbf{\mathcal{E}} \Longrightarrow \mathbf{F} \rightarrow \mathbf{AEBF} \mid \mathbf{\mathcal{E}}$ |
|                        | $B \rightarrow T   /T$    | $\mathbf{A} \rightarrow + \mathbf{S} \mid - \mathbf{S}$                                                                                        |
|                        |                           | $B \rightarrow T   /T$                                                                                                                         |



Benha University 1<sup>st</sup> Term (January 2019) Final Exam Class: 4th Year Students (Computer Science Major) Subject: Compiler Theory Course Code: CSW 456



Faculty of Computers & Informatics Date: 10/1/2019 Time: 3 Hours Total Marks: 75 Marks Examiner(s): Dr. Ahmed Hassan

**Question No. 4** 

[15 Marks]

### A language contains three types of tokens as the following:

1-The first token type is the keword = { if }, (<u>higher priority</u>)
2-The second token type represents the identifiers which are any non-empty string over { a, i, f },
3-The third token type are the unary integers = {1, 11, 111, 1111, ...}. (lower

<u>priority</u>)

### For the given language do:

- (a) Write a pattern (regular expression) to define the lexemes of each token.
- if (a|i|f)(a|i|f)\* 11\* (b)Draw an NFA scanner for your patterns from step (a).



(c) Transform the NFA scanner from step (b) into DFA scanner.



| state              | i  | f  | a | 1 |
|--------------------|----|----|---|---|
| 0123               | 45 | 5  | 5 | 6 |
| 45 <b>ID</b>       | 5  | 57 | 5 | Ø |
| 5 <b>ID</b>        | 5  | 5  | 5 | Ø |
| 57 <mark>IF</mark> | 5  | 5  | 5 | Ø |
| 6 INT              | Ø  | Ø  | Ø | 6 |

Use the scanner from step (c) to define the tokens types and lexemes in the following input stream "ifaa111if11biif11 "

 $\begin{array}{l} \text{ifaa} \rightarrow \text{ID} \\ 111 \rightarrow \text{INT} \\ \text{if} \rightarrow \text{IF} \\ 11 \rightarrow \text{INT} \\ \text{b} \rightarrow \text{Error} \\ \text{iif} \rightarrow \text{ID} \\ 11 \rightarrow \text{INT} \end{array}$ 

Question No. 5

S

 $S' \rightarrow .S$ 

 $S \rightarrow .aSb$ 

 $S \rightarrow .aA$ 

S→.a

 $S \rightarrow aSb.$ 

6

For the following grammar:

 $\begin{array}{c} S \rightarrow aSb \mid aA \mid a \\ A \rightarrow c \end{array}$ 

(a) Construct the LR(1) parser table.

S

 $S \rightarrow a.A$ 

 $S \rightarrow .aSb$ 

 $S \rightarrow .aA$ 

5

 $A \rightarrow c$ .

С

 $S \rightarrow .a$ 

 $\mathsf{A} \to .\mathsf{c}$ 

 $S \rightarrow a$ .

1

aS.b

 $S' \rightarrow S$ .

а



| Stack                   | Input  | Action        |
|-------------------------|--------|---------------|
| \$0                     | aacb\$ | S3            |
| \$0a3                   | acb\$  | S3            |
| \$0a3a3                 | cb\$   | S5            |
| \$0a3a3 <mark>c5</mark> | b\$    | r4 and goto 4 |
| \$0a3 <mark>a3A4</mark> | b\$    | r2 and goto 2 |
| \$0a3 <mark>S2</mark>   | b\$    | S6            |
| \$0a3S2b6               | \$     | r1 and goto 1 |
| \$0S1                   | \$     | accepted      |

| LR(1)        | а  | b     | с  | \$  | S | Α |
|--------------|----|-------|----|-----|---|---|
| 0            | S3 |       |    |     | 1 |   |
| 1            |    |       |    | acc |   |   |
| 2            |    | S6    |    |     |   |   |
| 3            | S3 | r3    | S5 | r3  | 2 | 4 |
| 4            |    | r2    |    | r2  |   |   |
| 5            |    | r4    |    | r4  |   |   |
| 6            |    | r1    |    | r1  |   |   |
| Non-Terminal |    | Follo | w  |     |   |   |

[15 Marks]

| Non-Terminal | Follow |
|--------------|--------|
| S            | \$,b   |
| Α            | \$,b   |



 $S \rightarrow aA$ .



Benha University 1<sup>st</sup> Term (January 2019) Final Exam Class: 4th Year Students (Computer Science Major) Subject: Compiler Theory Course Code: CSW 456



Faculty of Computers & Informatics Date: 10/1/2019 Time: 3 Hours Total Marks: 75 Marks Examiner(s): Dr. Ahmed Hassan

#### (c) Is it LR(0) grammar? Why? No, state 3 has both shift and reduce.

#### **Question No. 6**

[15 Marks]

Use the following semantic rules to generate the intermediate code for



| INDEX | VALUE |
|-------|-------|
| 0     | Int 3 |
| 1     | Int 4 |
| 2     | Int 5 |
| 3     | 1 + 2 |
| 4     | 0 * 3 |

T0 = 3 T1 = 4 T2 = 5 T3 = T1 + T2T4 = T0 \* T3

Result = 3\*(4+5) = 3\*9 = 27

GOOD LUCK,